A Study on Nonlinear Dispersive Wave Equations and Wave Breaking Solution
نویسندگان
چکیده
منابع مشابه
Wave Breaking in a Class of Nonlocal Dispersive Wave Equations
The Korteweg de Vries (KdV) equation is well known as an approximation model for small amplitude and long waves in different physical contexts, but wave breaking phenomena related to short wavelengths are not captured in. In this work we consider a class of nonlocal dispersive wave equations which also incorporate physics of short wavelength scales. The model is identified by a renormalization ...
متن کاملNumerical Solution of Some Nonlocal, Nonlinear Dispersive Wave Equations
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usuall...
متن کاملNumerical solution of nonlinear wave equations in stratified dispersive media
Nonlinear wave motion in dispersive media is solved numerically. The model applies to laser propagation in a relativistic plasma. The latter causes, besides dispersion, nonlinear effects due to relativistic mass variation in the presence of strong laser pulses. A new variant of the Gautschi–type integrator for reducing the number of time steps is proposed as a fast solver for such nonlinear wav...
متن کاملA numerical solution of variable order diusion and wave equations
In this work, we consider variable order difusion and wave equations. The derivative is describedin the Caputo sence of variable order. We use the Genocchi polynomials as basic functions andobtain operational matrices via these polynomials. These matrices and collocation method help usto convert variable order diusion and wave equations to an algebraic system. Some examples aregiven to show the...
متن کاملComplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering)
سال: 2009
ISSN: 1883-8944,1884-2399
DOI: 10.2208/kaigan.65.1